VIDYA BHAWAN, BALIKA VIDYAPITH

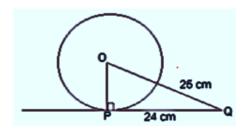
Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Class: 10th Subject: Mathematics Date: 11.11.2020

EXERCISE 10.2

Q.1. Choose the correct option:


From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

(A) 7 cm

(B) 12 cm

(C) 15 cm

D) 24.5 cm

Sol. QT is a tangent to the circle at T and OT is radius

Also, OQ = 25 cm and QT = 24 cm

∴ Using Pythagoras theorem, we get

$$OQ^2 = QT^2 + OT^2$$

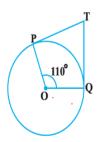
$$\Rightarrow$$
 OT² = OQ² - QT² = 25² - 24² = (25 - 24) (25 + 24)

$$= 1 \times 49 = 49 = 7^2 \implies 0T = 7$$

Thus, the required radius is 7 cm.

 \therefore The correct option is (A).

Q.2. Choose the correct option:


In figure, if TP and TQ are the two tangents to a circle with centre O so that LPOQ = 110°, then LPTQ is equal to

(A) 60°

(B) 70°

(C) 80°

(D) 90°

Sol. : TQ and TP are tangents to a circle with centre O.

such that $\angle POQ = 110^{\circ}$

∴ OP \perp PT and OQ \perp QT

 $\Rightarrow \angle OPT = 90^{\circ} \text{ and } \angle OQT = 90^{\circ}$

Now, in the quadrilateral TPOQ, we get

$$\therefore \angle PTQ + 90^{\circ} + 110^{\circ} + 90^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle PTQ + 290^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle PTQ = 360^{\circ} - 290^{\circ} = 70^{\circ}$$

Thus, the correct option is (B).

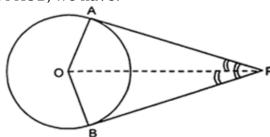
Q.3. Choose the correct option:

If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80° , then $\angle POA$ is equal to

(A)
$$50^{\circ}$$

(B)
$$60^{\circ}$$

(C)
$$70^{\circ}$$


(D)
$$80^{\circ}$$

Sol. Since, O is the centre of the circle and two tangents from P to the circle are PA and PB.

$$\therefore$$
 OA \perp AP and OB \perp BP

$$\Rightarrow \angle OAP = \angle OBP = 90^{\circ}$$

Now, in quadrilateral PAOB, we have:

$$\angle APB + \angle PAO + \angle AOB + \angle PBO = 360^{\circ}$$

$$\Rightarrow$$
 80° + 90° + \angle AOB + 90° = 360°

$$\Rightarrow$$
 260° + \angle AOB = 360°

In rt \triangle OAP and rt \triangle OBP, we have

$$OP = OP$$

$$\angle OAF = \angle OBP$$

$$OA = OB$$

$$\therefore \triangle OAP \cong \triangle OBP$$

: Their corresponding parts are equal

Thus, the option (A) is correct.